Research
Can Learned Optimization Make RL Less Difficult?
Alex Goldie, Chris Lu, Matthew Jackson, Shimon Whiteson, Jakob Foerster
NeurIPS 2024 (Spotlight)
No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery
Alexander Rutherford*, Michael Beukman*, Timon Willi, Bruno Lacerda, Nick Hawes, Jakob Foerster
NeurIPS 2024
Artificial Generational Intelligence: Cultural Accumulation in RL
Jonathan Cook*, Chris Lu*, Edward Hughes, Joel Leibo, Jakob Foerster
NeurIPS 2024
JaxMARL: Multi-Agent RL Environments and Algorithms in JAX
Alexander Rutherford*†, Benjamin Ellis*†, Matteo Gallici*†, Jonathan Cook†, Andrei Lupu†, Gardar Ingvarsson†, Timon Willi†, Ravi Hammond†, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu*†, Jakob Foerster
NeurIPS Datasets and Benchmarks 2024
Mixtures of Experts for Scaling up Neural Networks in Order Execution
Kang Li, Mihai Cucuringu, Leandro Sánchez-Betancourt, Timon Willi
ICAIF 2024
Policy-Guided Diffusion
Matthew Jackson, Michael Matthews, Cong Lu, Ben Ellis, Shimon Whiteson, Jakob Foerster
RLC 2024
Mixture of Experts in a Mixture of RL Settings
Timon Willi*, Johan Obando-Ceron*, Jakob Foerster, Karolina Dziugaite, Pablo Samuel Castro
RLC 2024
Refining Minimax Regret for Unsupervised Environment Design
Michael Beukman, Samuel Coward, Michael Matthews, Mattie Fellows, Minqi Jiang, Michael Dennis, Jakob Foerster
ICML 2024
Craftax: A Lightning-Fast Benchmark for Open-Ended RL
Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson, Samuel Coward, Jakob Foerster
ICML 2024 (Spotlight)
EvIL: Evolution Strategies for Generalisable Imitation Learning
Silvia Sapora, Chris Lu, Gokul Swamy, Yee Whye Teh, Jakob Foerster
ICML 2024
Mixture of Experts Unlock Parameter Scaling for Deep RL
Johan Obando-Ceron*, Ghada Sokar*, Timon Willi*, Clare Lyle, Jesse Farebrother, Jakob Foerster, Karolina Dziugaite, Doina Precup, Pablo Samuel Castro
ICML 2024 (Spotlight)
Analysing the Sample Complexity of Opponent Shaping
Kitty Fung, Qizhen Zhang, Jia Wan, Timon Willi, Jakob Foerster
AAMAS 2024
Discovering Temporally-Aware Reinforcement Learning Algorithms
Matthew Jackson*, Chris Lu*, Louis Kirsch, Robert Lange, Shimon Whiteson, Jakob Foerster
ICLR 2024
Illusory Attacks: Detectability Matters in Adversarial Attacks on Sequential Decision-Makers
Tim Franzmeyer, Stephen McAleer, Joao Henriques, Jakob Foerster, Philip Torr, Adel Bibi, Christian Schroeder de Witt
ICLR 2024
Discovering General Reinforcement Learning Algorithms with Adversarial Environment Design
Matthew Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Greg Farquhar, Shimon Whiteson, Jakob Foerster
NeurIPS 2023
SMACv2: An Improved Benchmark for Cooperative Multi-Agent RL
Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob Foerster, Shimon Whiteson
NeurIPS Datasets and Benchmarks 2023
Structured State Space Models for In-Context RL
Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, Feryal Behbahani
NeurIPS 2023
JAX-LOB: A GPU-Accelerated Limit Order Book Simulator to Unlock Large-Scale RL for Trading
Sascha Frey*, Kang Li*, Peer Nagy*, Silvia Sapora, Chris Lu, Stefan Zohren, Jakob Foerster, Anisoara Calinescu
ICAIF 2023 (Best Academic Paper Award)
Generative AI for End-to-End Limit Order Book Modelling
Peer Nagy, Sascha Frey, Silvia Sapora, Kang Li, Anisoara Calinescu, Stefan Zohren, Jakob Foerster
ICAIF 2023
Perfectly Secure Steganography using Minimum Entropy Coupling
Christian Schroeder de Witt*, Samuel Sokota*, Ziko Kolter, Jakob Foerster, Martin Strohmeier
ICLR 2023
Adversarial Diversity for Hanabi
Brandon Cui*, Andrei Lupu*, Samuel Sokota, Hengyuan Hu, David J Wu, Jakob Foerster
ICLR 2023
Equivariant Networks for Zero-Shot Coordination
Darius Muglich, Christian Schroeder de Witt, Elise van der Pol, Jakob Foerster
NeurIPS 2022
Self-Explaining Deviations for Coordination
Hengyuan Hu, Samuel Sokota, David Wu, Anton Bakhtin, Andrei Lupu, Brandon Cui, Jakob Foerster
NeurIPS 2022
Discovered Policy Optimization
Chris Lu*, Jakub Grudzien Kuba*, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, Jakob Foerster
NeurIPS 2022
Grounding Aleatoric Uncertainty for Unsupervised Environment Design
Minqi Jiang, Michael Dennis, Jack Parker-Holder, Andrei Lupu, Heinrich Kuttler, Edward Grefenstette, Tim Rocktaschel, Jakob Foerster
NeurIPS 2022
Nocturne: a scalable driving benchmark for bringing multi-agent learning one step closer to the real world
Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, Jakob Foerster
NeurIPS Datasets and Benchmarks 2022
Proximal Learning with Opponent-Learning Awareness
Stephen Zhao, Chris Lu, Roger Baker Grosse, Jakob Foerster
NeurIPS 2022
Model-Free Opponent Shaping
Chris Lu, Timon Willi, Christian Schroeder de Witt, Jakob Foerster
ICML 2022
Communicating via Markov Decision Processes
Samuel Sokota*, Christian Schroeder de Witt*, Maximilian Igl, Luisa M Zintgraf, Philip Torr, J. Zico Kolter, Shimon Whiteson, Jakob Foerster
ICML 2022
Generalized Beliefs for Cooperative AI
Darius Muglich, Luisa Zintgraf, Christian Schroeder de Witt, Shimon Whiteson, Jakob Foerster
ICML 2022
Mirror Learning: A Unifying Framework of Policy Optimisation
Jakub Grudzien Kuba, Christian Schroeder de Witt, Jakob Foerster
ICML 2022
COLA: Consistent Learning with Opponent-Learning Awareness
Timon Willi*, Johannes Treutlein*, Alistair Letcher*, Jakob Foerster
ICML 2022